3.231 \(\int \frac {1}{\tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=199 \[ \frac {\left (\frac {1}{8}+\frac {i}{8}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{5/2} d}-\frac {317 \sqrt {a+i a \tan (c+d x)}}{60 a^3 d \sqrt {\tan (c+d x)}}+\frac {151}{60 a^2 d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {17}{30 a d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {1}{5 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2}} \]

[Out]

(1/8+1/8*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/a^(5/2)/d+151/60/a^2/d/tan(d*x+c)
^(1/2)/(a+I*a*tan(d*x+c))^(1/2)-317/60*(a+I*a*tan(d*x+c))^(1/2)/a^3/d/tan(d*x+c)^(1/2)+1/5/d/tan(d*x+c)^(1/2)/
(a+I*a*tan(d*x+c))^(5/2)+17/30/a/d/tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.60, antiderivative size = 199, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {3559, 3596, 3598, 12, 3544, 205} \[ -\frac {317 \sqrt {a+i a \tan (c+d x)}}{60 a^3 d \sqrt {\tan (c+d x)}}+\frac {151}{60 a^2 d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac {17}{30 a d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {1}{5 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Tan[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(5/2)),x]

[Out]

((1/8 + I/8)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(a^(5/2)*d) + 1/(5*d*Sq
rt[Tan[c + d*x]]*(a + I*a*Tan[c + d*x])^(5/2)) + 17/(30*a*d*Sqrt[Tan[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2)) +
 151/(60*a^2*d*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) - (317*Sqrt[a + I*a*Tan[c + d*x]])/(60*a^3*d*Sqr
t[Tan[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3559

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(a*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(2*f*m*(b*c - a*d)), x] + Dist[1/(2*a*m*(b*c - a*d))
, Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b*c*m - a*d*(2*m + n + 1) + b*d*(m + n + 1)*Tan
[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2
+ d^2, 0] && LtQ[m, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3596

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*A + b*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(2
*f*m*(b*c - a*d)), x] + Dist[1/(2*a*m*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Si
mp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] &&  !GtQ[n,
0]

Rule 3598

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*d - B*c)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(f
*(n + 1)*(c^2 + d^2)), x] - Dist[1/(a*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n
 + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c*m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x],
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {1}{\tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx &=\frac {1}{5 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac {\int \frac {\frac {11 a}{2}-3 i a \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}} \, dx}{5 a^2}\\ &=\frac {1}{5 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac {17}{30 a d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {\int \frac {\frac {83 a^2}{4}-17 i a^2 \tan (c+d x)}{\tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx}{15 a^4}\\ &=\frac {1}{5 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac {17}{30 a d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {151}{60 a^2 d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\int \frac {\sqrt {a+i a \tan (c+d x)} \left (\frac {317 a^3}{8}-\frac {151}{4} i a^3 \tan (c+d x)\right )}{\tan ^{\frac {3}{2}}(c+d x)} \, dx}{15 a^6}\\ &=\frac {1}{5 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac {17}{30 a d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {151}{60 a^2 d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {317 \sqrt {a+i a \tan (c+d x)}}{60 a^3 d \sqrt {\tan (c+d x)}}+\frac {2 \int \frac {15 i a^4 \sqrt {a+i a \tan (c+d x)}}{16 \sqrt {\tan (c+d x)}} \, dx}{15 a^7}\\ &=\frac {1}{5 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac {17}{30 a d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {151}{60 a^2 d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {317 \sqrt {a+i a \tan (c+d x)}}{60 a^3 d \sqrt {\tan (c+d x)}}+\frac {i \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{8 a^3}\\ &=\frac {1}{5 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac {17}{30 a d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {151}{60 a^2 d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {317 \sqrt {a+i a \tan (c+d x)}}{60 a^3 d \sqrt {\tan (c+d x)}}+\frac {\operatorname {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 a d}\\ &=\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac {1}{5 d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2}}+\frac {17}{30 a d \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {151}{60 a^2 d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {317 \sqrt {a+i a \tan (c+d x)}}{60 a^3 d \sqrt {\tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.37, size = 203, normalized size = 1.02 \[ \frac {i e^{-4 i (c+d x)} \sqrt {\tan (c+d x)} \left (\sqrt {-1+e^{2 i (c+d x)}} \left (26 e^{2 i (c+d x)}+194 e^{4 i (c+d x)}-463 e^{6 i (c+d x)}+3\right )+15 e^{5 i (c+d x)} \left (-1+e^{2 i (c+d x)}\right ) \tanh ^{-1}\left (\frac {e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )\right )}{60 \sqrt {2} a^2 d \left (-1+e^{2 i (c+d x)}\right )^{3/2} \sqrt {\frac {a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Tan[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(5/2)),x]

[Out]

((I/60)*(Sqrt[-1 + E^((2*I)*(c + d*x))]*(3 + 26*E^((2*I)*(c + d*x)) + 194*E^((4*I)*(c + d*x)) - 463*E^((6*I)*(
c + d*x))) + 15*E^((5*I)*(c + d*x))*(-1 + E^((2*I)*(c + d*x)))*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c +
 d*x))]])*Sqrt[Tan[c + d*x]])/(Sqrt[2]*a^2*d*E^((4*I)*(c + d*x))*(-1 + E^((2*I)*(c + d*x)))^(3/2)*Sqrt[(a*E^((
2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))])

________________________________________________________________________________________

fricas [B]  time = 0.61, size = 393, normalized size = 1.97 \[ \frac {\sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-463 i \, e^{\left (8 i \, d x + 8 i \, c\right )} - 269 i \, e^{\left (6 i \, d x + 6 i \, c\right )} + 220 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 29 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 3 i\right )} - 30 \, {\left (a^{3} d e^{\left (7 i \, d x + 7 i \, c\right )} - a^{3} d e^{\left (5 i \, d x + 5 i \, c\right )}\right )} \sqrt {\frac {i}{8 \, a^{5} d^{2}}} \log \left (i \, a^{3} d \sqrt {\frac {i}{8 \, a^{5} d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) + 30 \, {\left (a^{3} d e^{\left (7 i \, d x + 7 i \, c\right )} - a^{3} d e^{\left (5 i \, d x + 5 i \, c\right )}\right )} \sqrt {\frac {i}{8 \, a^{5} d^{2}}} \log \left (-i \, a^{3} d \sqrt {\frac {i}{8 \, a^{5} d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right )}{120 \, {\left (a^{3} d e^{\left (7 i \, d x + 7 i \, c\right )} - a^{3} d e^{\left (5 i \, d x + 5 i \, c\right )}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)^(3/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/120*(sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*
(-463*I*e^(8*I*d*x + 8*I*c) - 269*I*e^(6*I*d*x + 6*I*c) + 220*I*e^(4*I*d*x + 4*I*c) + 29*I*e^(2*I*d*x + 2*I*c)
 + 3*I) - 30*(a^3*d*e^(7*I*d*x + 7*I*c) - a^3*d*e^(5*I*d*x + 5*I*c))*sqrt(1/8*I/(a^5*d^2))*log(I*a^3*d*sqrt(1/
8*I/(a^5*d^2))*e^(I*d*x + I*c) + 1/4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) +
I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)) + 30*(a^3*d*e^(7*I*d*x + 7*I*c) - a^3*d*e^(5*I*d*x +
5*I*c))*sqrt(1/8*I/(a^5*d^2))*log(-I*a^3*d*sqrt(1/8*I/(a^5*d^2))*e^(I*d*x + I*c) + 1/4*sqrt(2)*sqrt(a/(e^(2*I*
d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)))/(a
^3*d*e^(7*I*d*x + 7*I*c) - a^3*d*e^(5*I*d*x + 5*I*c))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \tan \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)^(3/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(1/((I*a*tan(d*x + c) + a)^(5/2)*tan(d*x + c)^(3/2)), x)

________________________________________________________________________________________

maple [B]  time = 0.20, size = 620, normalized size = 3.12 \[ -\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (1268 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (\tan ^{4}\left (d x +c \right )\right )+60 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \left (\tan ^{4}\left (d x +c \right )\right ) a -15 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \left (\tan ^{5}\left (d x +c \right )\right ) a -5660 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (\tan ^{2}\left (d x +c \right )\right )-60 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \left (\tan ^{2}\left (d x +c \right )\right ) a -4468 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right )+90 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \left (\tan ^{3}\left (d x +c \right )\right ) a +2940 i \tan \left (d x +c \right ) \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-15 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \tan \left (d x +c \right ) a +480 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{240 d \,a^{3} \sqrt {\tan \left (d x +c \right )}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/tan(d*x+c)^(3/2)/(a+I*a*tan(d*x+c))^(5/2),x)

[Out]

-1/240/d*(a*(1+I*tan(d*x+c)))^(1/2)/a^3*(1268*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^4+
60*I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c
)+I))*tan(d*x+c)^4*a-15*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan
(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^5*a-5660*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2-6
0*I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)
+I))*tan(d*x+c)^2*a-4468*I*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^3+90*2^(1/2)*ln(-(-2*
2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^3*a+
2940*I*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)-15*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(
a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)*a+480*(a*tan(d*x+c)*(1+I*t
an(d*x+c)))^(1/2)*(-I*a)^(1/2))/tan(d*x+c)^(1/2)/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(-I*a)^(1/2)/(-tan(d*x+
c)+I)^4

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)^(3/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\mathrm {tan}\left (c+d\,x\right )}^{3/2}\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(tan(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)^(5/2)),x)

[Out]

int(1/(tan(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)^(5/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {5}{2}} \tan ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)**(3/2)/(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Integral(1/((I*a*(tan(c + d*x) - I))**(5/2)*tan(c + d*x)**(3/2)), x)

________________________________________________________________________________________